英国·威廉希尔(WilliamHill)中文官方网站

{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 关于威廉希尔
    • 英国威廉希尔公司简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 团队队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 人才招聘
    • 招生信息
    • 就业信息
    • 招生宣传
  • 员工之家
    • 员工组织
    • 员工基金
    • 员工活动
    • 百年院庆
  • 信息信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

On the largest prime factors of consecutive integers

日期:2018-06-08  作者:  点击:[]

报告人:王志伟博士

报告时间:2018. 6. 9 下午5:00-6:00

报告地点:数学院一楼报告厅


报告摘要:  

Let $P^+(n)$ denote the largest prime factor of the integer $n$. One might guess that the density of integers $n$ with $P^+(n)<P^+(n+1)$ is $1/2$. In fact, this conjecture was formulated in the correspondence of Erd\H{o}s and Tur\'{a}n in the 1930s. More generally, we may consider this type of problem for $k-$consecutive integers with $k\geq 3$, or impose some conditions on the integer $n$. In this talk, we present the progress towards these questions.



上一条:数字混沌系统的网络分析 下一条:从平方和问题谈起

【关闭】

友情链接

版权信息:英国·威廉希尔(WilliamHill)中文官方网站