英国·威廉希尔(WilliamHill)中文官方网站

{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 关于威廉希尔
    • 英国威廉希尔公司简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 团队队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 人才招聘
    • 招生信息
    • 就业信息
    • 招生宣传
  • 员工之家
    • 员工组织
    • 员工基金
    • 员工活动
    • 百年院庆
  • 信息信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

The L^2 Geometry of Moduli Spaces of P^1 Vortices

日期:2020-07-07  作者:  点击:[]

报告题目:The L^2 Geometry of Moduli Spaces of P^1 Vortices

主 讲 人:Martin Speight

单 位:英国利兹大学

时 间:7月9日16:00

ZOOM ID:967 3130 4375

密 码:123456

摘 要:

The gauged sigma model with target P^1supports two distinct species of vortex, one for each fixed point of the action of the structure group. Vortices of one species may coexist in stable equilibrium with antivortices of the other. The moduli space of such static solutions is noncompact, even on compact domains. It has a natural Riemannian metric which is of intrinsic geometric interest and encodes much useful information about the low energy dynamics of (anti) vortices. I will review what is known about this metric, concentrating on the moduli space of vortex-antivortex pairs, and describe some conjectures motivated by a formal compactification of the moduli space constructed using an auxiliary gauged linear sigma model. This seminar is based on joint work with NunoRomaoand Rene Garcia Lara.

简 介:

Martin Speight is a professor of mathematics at Leeds University, UK. Martin received his Ph.D. from Durham University in 1995 and has been a postdoc at Texas University at Austin, USA, and at the Max Planck Institute in Leipzig, Germany. Martin's research interests lie in the field of mathematical physics and geometrical formulations of physical and solitonic systems. He is especially known for his work on intervortex forces, on near-BPS Skyrmions, and on the concept of restricted harmonicity. Martin has published more than 50 papers in Phys. Rev. Lett.,Commun. Math. Phys., Phys. Rev. D, Phys. Rev. B, Phys. Lett. B,Nucl. Phys. B, Nonlinearity, Lett. Math. Phys., J. Math. Phys., J. Geom. Phys., J. Phys. A, Proc. Roy. Soc.Lond., etc.

上一条:Discretization Methods for FBSDEs 下一条:3D海洋流体动力学方程组的解耦有限元方法

【关闭】

友情链接

版权信息:英国·威廉希尔(WilliamHill)中文官方网站