英国·威廉希尔(WilliamHill)中文官方网站

{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 关于威廉希尔
    • 英国威廉希尔公司简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 团队队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 人才招聘
    • 招生信息
    • 就业信息
    • 招生宣传
  • 员工之家
    • 员工组织
    • 员工基金
    • 员工活动
    • 百年院庆
  • 信息信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

Numerical Simulations of Macroscopic Quantities for Stochastic Differential Equations with Alpha-stable Processes

日期:2020-09-16  作者:  点击:[]

报告题目:Numerical Simulations of Macroscopic Quantities for Stochastic Differential Equations with Alpha-stable Processes

主 讲 人:Xiaofan  Li

单 位:Illinois Institute of Technology

时 间:9月23日10:00

ZOOM ID:210 089 8623

摘 要:

The mean first exit time, escape probability and transitional probability density are utilized to quantify dynamical behaviors of stochastic differential equations with non-Gaussian,𝛼-stable type L\'evy motions. Taking advantage of the Toeplitz matrix structure of the time-space discretization, a fast and accurate numerical algorithm is proposed to simulate the nonlocal Fokker-Planck equations on either a bounded or infinite domain. Under a specified condition, the scheme is shown to satisfy a discrete maximum principle and to be convergent. The numerical results for two prototypical stochastic systems, the Ornstein-Uhlenbeck system and the double-well system are shown.

简 介:

Xiaofan Li is a Professor in Department of Applied Mathematics at Illinois Institute of Technology where he has been a faculty member since 1999. He is the Senior Associate Dean of College of Computing. He completed his Ph.D. at UCLA and his undergraduate studies at Zhejiang University. His research interests include boundary integral methods with applications in fluid mechanics and materials science, nonlocal equations associated with stochastic differential equations and structure-preserving numerical methods for PDEs.

上一条:Stable Discretization and Robust Solvers for Poroelasticity 下一条:Characterization of Invertible Bipartite Graphs with Unique Perfect Matchings

【关闭】

友情链接

版权信息:英国·威廉希尔(WilliamHill)中文官方网站