英国·威廉希尔(WilliamHill)中文官方网站

{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 关于威廉希尔
    • 英国威廉希尔公司简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 团队队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 人才招聘
    • 招生信息
    • 就业信息
    • 招生宣传
  • 员工之家
    • 员工组织
    • 员工基金
    • 员工活动
    • 百年院庆
  • 信息信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

Inexact Sequential Quadratic Optimization with Penalty Parameter Updates within the QP Solver

日期:2022-11-17  作者:  点击:[]

报 告 题 目:Inexact Sequential Quadratic Optimization with Penalty Parameter Updates within the QP Solver

主 讲 人:王 浩

单 位:南开大学

时 间:11月18日19:00

腾 讯 ID: 632-440-885

摘 要:

This talk focuses on the design of sequential quadratic optimization (commonly known as SQP) methods for solving large-scale nonlinear optimization problems. The most computationally demanding aspect of such an approach is the computation of the search direction during each iteration, for which we consider the use of matrix-free methods. In particular, we develop a method that requires an inexact solve of a single QP subproblem to establish the convergence of the overall SQP method. It is known that SQP methods can be plagued by poor behavior of the global convergence mechanism. To confront this issue, we propose the use of an exact penalty function with a dynamic penalty parameter updating strategy to be employed within the subproblem solver in such a way that the resulting search direction predicts progress toward both feasibility and optimality. We present our parameter updating strategy and prove that, under reasonable assumptions, the strategy does not modify the penalty parameter unnecessarily. We close the paper with a discussion of the results of numerical experiments that illustrate the benefits of our proposed techniques.

简 介:

王浩博士于2015年5月在美国Lehigh University工业工程系获得博士学位,导师为Frank E. Curtis,并于2010年和2007年在北京航空航天大学数学与应用数学系分别获得理学硕士和学士学位。主要成果在优化顶级期刊SIAM Journal on Optimization上发表。王浩博士于2016年3月以助理教授加入上海科技大学信息与技术学院。当前研究领域主要为惩罚算法、非精确算法、正则化问题等。


上一条:焦李成院士作客WilliamHill中文官方网站110周年校庆学术报告会 下一条:Linear vs. nonlinear speed selection of the front propagation into unstable states

【关闭】

友情链接

版权信息:英国·威廉希尔(WilliamHill)中文官方网站